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ABSTRACT
The amount of live video traffic has been increasing at high

rates due to the proliferation of online social platforms such

as Facebook Live. These platforms enable anyone to broad-

cast live videos to many users anytime. Such new applica-

tions have introduced a renewed interest in designing effi-

cient multicast services. Current multicast systems do not

scale because of the state, processing, and communication

overheads imposed on routers. We propose a new system

called Helix to efficiently realize multicast trees inside ISP

networks. Helix splits information about every multicast tree

as a label attached to packets and state stored at few routers.

Helix encodes tree links using probabilistic filters into la-

bels, produces state to address the probabilistic nature of

these filters, and reduces this state by recursively encoding

it multiple times. In the data plane, Helix forwards packets

based on their labels and the state. We implemented Helix in

a programmable data plane testbed. Our experiments show

that Helix easily saturates a 10 Gbps link. Moreover, we com-

pared Helix against the closest systems in the literature using

simulations. Our results show that Helix achieves significant

gains over the closest systems in the literature.

1 INTRODUCTION
Recent large-scale applications enable online sharing of live

content. Examples of such applications include live Internet

broadcast (e.g., Facebook Live and Periscope), IPTV [13],

video conferencing [3] and massive multiplayer games [5].

The scale of these applications is unprecedented. For instance,

Facebook Live aims to stream millions of live sessions to

millions of concurrent users [23, 29]. As another example,

BBC reported a peak of 9.3 million TV users watching the

Euro 2016 opening, and 2.3 million users watched that event

through the BBC Internet streaming service [22]. The amount

of live streaming traffic is expected to occupy 17% of the total

Internet video traffic by 2022 [6]. These applications thus

have restored the need for scalable multicast systems. In

particular, to reduce the network load of such applications,

ISPs use multicast to efficiently carry the traffic through their

networks. For example, AT&T has deployed UVerse and BT

has deployed YouView multicast services.

Large content providers require ISPs that carry their traffic

to meet certain quality objectives or service level agreements.

ISPs thus need to carefully direct traffic flows of multicast

sessions through their networks in order to satisfy these qual-

ity objectives. That is, the traffic flow of a multicast session

may not always be forwarded on the shortest network paths

within the ISP. Instead, the traffic flow of a multicast session

is forwarded on a customized multicast tree, which is a dis-

tribution tree created over routers in the ISP to reach all end

users of the multicast session, while achieving the required

quality objectives. That is, a customized multicast tree is a

general tree and is not necessarily a minimum spanning tree.

For example, different methods have been proposed in the

literature to create customized multicast trees that minimize

the maximum link utilization such as [4, 14, 15, 25].

ISPs need to deploy a multicast forwarding system inside

their networks to implement customized distribution trees.

However, designing efficient multicast forwarding systems is

quite challenging, as it needs to simultaneously address three

main issues: (i) scalability, (ii) correctness, and (iii) generality.

The scalability has been a major issue since the introduction

of IP multicast [8]. The main concern is that group manage-

ment and tree construction protocols (i.e., IGMP [2] and PIM

[12]) require maintaining state at routers for each session. In

addition, these protocols generate control messages among

routers to refresh and update this state. Maintaining and re-

freshing state for each session impose significant overheads

on core routers that need to support high-speed links. Thus,

in practice, router manufacturers tend to limit the number of

multicast sessions. For example, the Cisco ASR 9000 series

can maintain up to 1,024 multicast sessions [7].

The correctness of a multicast forwarding system means

that the data plane should forward packets on and only on
links of the multicast tree and should not result in any for-

warding loops in the network. Although a critical require-

ment for bandwidth-demanding applications, correctness

may not be guaranteed by all multicast systems in the lit-

erature. For example, the LIPSIN system [17] may forward

packets on links that do not belong to the multicast tree

(referred to as false positives) and can also introduce loops

in the network. Finally, the generality of a multicast system

indicates that it can support different multicast distribution

trees, traffic patterns, and network topologies. This is a key

requirement for implementing customized trees that satisfy

various quality objectives. Not all multicast systems in the

literature possess this property. For example, Elmo [24] is

designed for a specific topology for data center networks

and cannot be used with other network topologies.
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In this paper, we propose a new multicast forwarding

system, called Helix, which addresses the above three chal-

lenges. Helix: (i) is general and can be used to implement

customized multicast trees in any network topology, (ii) does

not introduce any loops or false positive packets, and (iii)

is scalable as it requires only a small state to be maintained

at a fraction of the routers and does not impose significant

processing overheads on routers. The key idea of Helix is to

split the information about a multicast tree into two parts:

constant-size label attached to packets and small state at some
routers in the tree. This information-split architecture leads

to substantial improvements in the data plane performance,

as well as allows Helix to strike a balance between the com-

munication (label) overhead and the memory and processing

overheads imposed on routers to handle labels and forward

traffic on the multicast tree. We present proofs to show the

correctness of Helix.

To show its feasibility and practicality, we have developed

a proof-of-concept implementation of Helix in a testbed that

uses NetFPGA. Our experiments show that Helix can eas-

ily provide line-rate throughput and it consumes a negli-

gible amount of the hardware resources. We have also im-

plemented a simulator to compare Helix against the closest

multicast forwarding systems in the literature using real

ISP topologies. Our simulation results show that Helix is

efficient and scalable, and it substantially outperforms the

closest systems across all considered performance metrics.

For example, Helix reduces the state per session by up to 18X

compared to the closest label-based multicast forwarding

system. Furthermore, compared to a rule-based system im-

plemented in OpenFlow, Helix decreases the required state

per session by up to 112X.

The organization of this paper is as follows. In §2, we sum-

marize the related work in the literature. In §3, we present

the details of the proposed system, and in §4 we present

our testbed implementation and experiments. In §5, we ana-

lyze Helix and compare it against others using large-scale

simulations. We conclude the paper in §6.

To avoid disrupting the flow of the paper, we present

the proofs of the theorems in Appendix A. In addition, we

describe a detailed example of Helix in Appendix B.
Ethics Considerations. This work does not raise any ethical
issues.

2 RELATEDWORK
We divide existing multicast forwarding systems into rule-

based and label-based systems. Rule-based systems maintain

the forwarding state (i.e., rule) about each session at routers.

Label-based systems move the forwarding information to

labels attached to packets.

Rule-based Systems. IP multicast [8] does not scale in real

deployments [9] due to its state and communication over-

heads. Specifically, its group management and tree construc-

tion protocols, e.g., IGMP [2] and PIM [12], need to maintain

state at routers belonging to the multicast tree. Moreover,

to refresh and update this state, these protocols generate

control messages that routers need to process. Furthermore,

IP multicast uses shortest paths and cannot implement cus-

tomized trees.

Multicast forwarding systems based on the match-action

abstraction can implement customized trees by installing

rules at routers. For instance, in OpenFlow [20], the con-

troller installs rules to forward/duplicate packets on speci-

fied paths. However, the forwarding state at routers grows

with the number of multicast sessions. To reduce the state,

Li et al. [19] proposed a multi-class Bloom filter (MBF) that

implement multicast trees in data center networks. For every

interface in a router, MBFmaintains a Bloom filter to indicate

whether packets of a specific session should be duplicated

on that interface. MBF assumes prior knowledge of joining

events and session size to calculate the number of hash func-

tions per session, which is not realistic for multicast sessions

in the general ISP setting. MBF cannot completely avoid false

positives, which introduce redundant traffic in the network.

Furthermore, MBF imposes additional communication over-

head to keep the filters at routers updated as multicast trees

change over time.

In these systems, various events, e.g., router joining/leaving

and link failures, trigger changing the multicast trees. These

changes may require updating the state at many routers,

which imposes additional communication overheads. Fur-

thermore, frequent router updates could introduce incon-

sistency in the network state, especially for large ISPs. To

avoid inconsistency, the control plane has to use a schedul-

ing algorithm to gradually update the forwarding rules at

routers [16]. Rule update scheduling reduces the network

agility (i.e., the ability of the network to quickly react to

dynamic changes) as the updated rules take time to be in-

stalled/activated at all intended routers; greedily updating

rules may result in violating service level agreements [31].

Label-based Systems. These systems use labels to repre-

sent multicast trees. Examples incude mLDP [27], BIER [28],

Elmo [24], and LIPSIN [17]. mLDP [27] forwards traffic on the

shortest paths and cannot support customized trees. More-

over, it requires an additional protocol to distribute labels

among routers. BIER [28] uses a bitmap to encode global

IDs of tree receivers in a label, and similar to mLDP only

supports trees that follow the shortest paths. Elmo [24] is

designed for data center networks. It attaches multiple labels

to packets, where each label represents a forwarding rule at
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Figure 1: Properties of current multicast systems.

a router in every layer of a Clos topology. Various optimiza-

tions in Elmo rely on the considered Clos topology and thus

cannot be easily used with general ISP networks.

LIPSIN [17] encodes link IDs of each tree using a Bloom

filter, and attaches the resulting filter to packets. LIPSIN may

result in loops and redundant traffic due to the false positives

of Bloom filters. The authors of LIPSIN proposed a method to

detect loops. However, this method makes each router keep

a list of all packets that have recently been forwarded by that

router, and it checks this list before forwarding every new

packet to break any loop. This method imposes substantial

memory and processing overheads on routers and thus is

not scalable. LIPSIN does not have a method to eliminate

false positives; it assumes that such packets will be dropped

somewhere downstream. This wastes significant network

resources especially for bandwidth-demanding applications

such as live video streaming.

We summarize the properties of current multicast for-

warding systems in Figure 1. Unlike Helix, current works in

the literature do not simultaneously address the scalability,

correctness, and generality challenges. In §5, we compare

Helix against LIPSIN and OpenFlow because both systems

can implement customized multicast trees.

3 PROPOSED HELIX SYSTEM
3.1 Overview
Multicast services can be used in various scenarios. A well-

known use-case is when a major ISP, e.g., AT&T, manages

multicast sessions for its own clients. Clients in this case can

be end users in applications such as IPTV and live streaming.

Clients could also be caches for content providers such as

Netflix, where the contents of such caches are periodically

updated using multicast. Another common use-case for mul-

ticast services happens when large-scale content providers,

such as YouTube, Facebook, Periscope, and Twitch partner

with ISPs to deliver live streams to millions of users.

Figure 2 provides a high-level overview of the proposed

Helix system. Helix is designed for ISPs to manage different

use cases of multicast within their networks. The considered

ISP network has data and control planes. The data plane is a

Figure 2: High-level overview of Helix.

set of routers and directed links connecting them. Each link

l has a global ID l .id . The control plane is a centralized con-

troller that computes and updates packet labels and states at

routers to forward the traffic of multicast sessions according

the quality objectives of the ISP. Examples of these objec-

tives include minimizing the maximum link utilization and

minimizing the delay.

A multicast session within the ISP has a source and multi-

ple destinations. We refer to the source as the ingress router

and the destinations as egress routers. End users (receivers of

the multicast traffic) are typically connected to egress routers.

Each multicast session has an ID included in all packets be-

longing to that session. This ID can be inserted, for example,

in the MAC destination address. A multicast session is repre-

sented by a distribution tree T, which spans the ingress and

egress routers of the session. The set of routers that T spans
are denoted by R. Links of this tree (referred to by L) do not

necessarily follow the shortest paths; rather they are chosen

to achieve the quality objectives of the ISP.

The ISP controller and content providers communicate

through application-layer APIs to initiate the session and

calculate the desired trees. When a multicast session changes

(e.g., starts, ends, or user joins/leaves), the corresponding

ingress or egress router sends a request to the controller.

The controller updates the distribution tree T based on the

service level agreements and the session events. Various

algorithms can be used to compute customized trees such as

[4, 14, 15, 25]. In this paper, the desired trees are given to the

controller and our work is to efficiently realize such trees in

the network and support their dynamic changes.

There are two modules in Helix: (i) Creating Labels, which

runs at the controller, and (ii) Processing Labeled Packets,
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which runs in the data plane at individual routers. For ev-

ery tree T, the controller calculates a label to be attached to

packets of the session and small state at some routers. It uses

a probabilistic set membership data structure (aka filter) to
encode the tree link IDs in a relatively small label using hash

functions. Since these filters trade off membership accuracy

for space efficiency, they may result in false positives, which
occur when some links that do not belong to the multicast

tree are incorrectly included in the computed filter. False pos-

itives waste network resources, overload routers, and could

create loops. In Section §3.2, we present the details of our

method of creating labels while eliminating false positives.

In Helix, various routers process packets as follows. The

ingress router of a multicast session attaches the label to

packets of that session. Egress routers receive joining/leaving

messages from end-users, and send them to the controller

to update the multicast trees. Moreover, egress routers de-

tach labels from packets coming from the core network to

transmit them to end users. Core routers, on the other hand,

use our algorithm (in §3.3) to forward multicast packets. The

algorithm checks labels attached to packets to decide which

interfaces to duplicate these packets on. In our design, labels

do not change as packets traverse the network. Furthermore,

labels are carefully structured so that they can be processed

at high speed without overloading routers.

We describe a detailed example in Appendix B to il-
lustrate the various components of Helix.

3.2 Creating Labels
Designing a label creation algorithm is a challenging task.

This is because it needs to achieve the generality, scalabil-

ity and correctness requirements. To achieve generality, the

proposed algorithm encodes the tree link IDs of every tree

using filters, which allow the multicast tree to include links

not on the shortest paths. Although these probabilistic filters

produce relatively small labels and can be processed effi-

ciently in the data plane, they may result in false positives

(i.e., incorrect forwarding). To ensure correctness, the data

plane needs to store these false positives and check them

before making decisions. This impacts the scalability of the

data plane as it needs to maintain more state.

The key idea to achieve these objectives is to encode both

tree and false-positive link IDs inside the label. Thus, the data

plane does not need to maintain all false positives. We design

an algorithm based on recursive encoding. Our recursive en-
coding algorithm works in rounds to successively reduce the

final state to be maintained at routers. Each round encodes a

given set of link IDs based on the outputs of previous rounds,

and produces a fixed-size label and an intermediate state.

The proposed algorithm carefully controls the inputs of each

round to guarantee the correctness of the final outputs. It

Figure 3: Overview of the proposed Recursive Label
Encoder (RLE).

has provable guarantees on its correctness as well as time

and space complexities. In addition, by parameterizing the

number of rounds, the algorithm can control the trade-off

between the label size and maintained state.

The algorithm for creating labels takes as input a multi-

cast tree T, and produces two outputs: label H and state S .
?? shows a high-level overview of the proposed algorithm,

which we call Recursive Label Encoder (RLE). RLE recursively
calls the BaseEncoder function K times. The BaseEncoder

encodes a given set of link IDs into a label of size B bits and

a state S . The state can have zero or more entries, and each

takes the form ⟨r , linkID⟩, where r is the router that should
maintain this state and linkID is the ID of the link identified

as a false positive during the encoding process.

The inputs to each recursive call of the BaseEncoder are

carefully selected to successively reduce the number of en-

tries in the final state as well as facilitate the packet process-

ing at core routers. The label of the session is created by

concatenating all intermediate labels produced from the K
recursive calls. The state remained after the Kth call is the fi-

nal state used in the forwarding decisions. The BaseEncoder

uses a probabilistic set membership data structure (filter) to

produce small labels. The BaseEncoder supports any filter

that can: (1) add an item to an existing filter, (2) test whether

an item exists (potentially with false positives), and (3) avoid

false negatives. A false negative happens when a link in the

multicast tree T is not represented in the filter. These fea-

tures are important to create labels and to develop our packet

processing algorithm. Examples of such data structures are

Bloom [1] and Cuckoo [11] filters.

We define two functions that the filter supports: (i) H =
EB (l ;h) to encode an input item l (link ID in our case) into

a bit string H of size B bits using hash function h, and (ii)

CB (l ,H ;h) to check whether a given item l belongs to H
using hash function h. Since the BaseEncoder is recursively
called K times and each with a different hash function, we

use a set of K independent hash functions denoted byHk =

{h1, . . . ,hK }.
Algorithm 1 lists the pseudo code of the RLE algorithm,

which implements the ideas in ??. RLE algorithm recursively

4



Efficient Multicast Forwarding Conf’2020, 2020,

Algorithm 1 The Recursive Label Encoder (RLE) algorithm.

Input: T: multicast tree

Input: K : number of filtering rounds

Input: B: number of bits per filter

Input: H = h1, . . . ,hK : set of K hash functions

Output: H : label to be attached to the session packets

Output: state: state sent to a subset of the core routers

1: function RLE(T, K , B)
2: H = {}

3: state = L
// initial false positive candidates

4: candidates = FindFPCandidates(T.R, T.L)

5: for (k = 1;k ≤ K ;k++) do
6: ⟨Hk , Sk ⟩=BaseEncoder(state , candidates , B, hk )

7: H = H ∪ Hk

8: candidates = state

9: state = Sk
10: return ⟨H , state⟩
11: function BaseEncoder(links , candidates , B, h)
12: label = BitString(size=B)

13: state = {}

14: for (l ∈ links) do
15: label = label ∪ EB (l .id ;h)

// Calculate state

16: for (l ∈ candidates) do
17: if (CB (l .id, label ;h)) then // false positive

// add (router ID, link ID) to state
18: state = state ∪ {⟨l .src, l .id⟩}

19: return ⟨label , state⟩
20: function FindFPCandidates(R, L)
21: cand = {} // calculated false positive candidates

22: L = {(l .dst → l .src ) for l in L} // upstream links

23: for (u ∈ R) do
24: for (l ∈ u .links) do
25: if (l < {L ∪ L}) then
26: cand = cand ∪ (u → l .dst )
27: return cand

calls the BaseEncoder K times with different inputs. The

main building block is the BaseEncoder (Lines 11–19). It

encodes every link l in the set of links passed to it using the

specified hash function h. Then, it calculates the state that
needs to be maintained at routers to avoid false positives.

It does so by checking all false positive candidates passed

in the candidates variable and adding only the entries that

collide with the tree links encoded in label to the returned
state.

Two important aspects need to be addressed: (i) determin-

ing the initial set of false positive candidates, which is the

set used in the first round of encoding, and (ii) controlling

the input parameters to the BaseEncoder in each of the K
encoding rounds. Both directly impact the correctness and

efficiency of the proposed label creation algorithm.

Computing Initial False Positive Set. The challenge of

finding the initial false positive candidates is to produce a

complete and minimal set. An incomplete set may result in

false positives that are not accounted for in the state, which

means forwarding multicast packets to links that do not

belong to the multicast tree. A non-minimal set increases

the state overhead by including state entries that will never

be used. For example, choosing a candidate set of all links in

the network clearly results in a complete set. However, this

set is not minimal and many non-tree links may needlessly

collide with the tree links in the calculated label. The key

idea of finding this minimal set is that only outgoing links

attached to routers belonging to the tree nodes R could be

false positives. This is because routers in R do not forward

packets on non-tree links since they store these links as state

or these non-tree links are encoded in the label. Thus, if

packets of a session would not reach a non-tree router, there

is no need to check links attached to that router. For example,

in Figure 2, link (a → b) is removed from the set because

router 1 will not forward packets to a.

The following theorem states the conditions for the initial

false positive candidate set to be complete and minimal.

Theorem 1. The initial false positive candidate set is com-
plete and minimal if it is composed of every link l = (u → v ) <
L provided that u ∈ R and (v → u) < L, where R and L are
the sets of nodes and links of the multicast tree T, respectively.

Proof. The details of the proof are given in the Appendix.

The idea of the proof is to derive the necessary conditions for

a link to be a false positive using basic routing constraints,

such as a router should not forward a packet back on the

same interface it received the packet on. We enumerate all

possible links in the network, and keep the ones that meet the

necessary conditions in the false positive candidate set. □

The above theorem allows us to remove many links from

the false positive candidate set. For example, links (2→ 1),
and (a → b) in Figure 2 cannot be false positives and thus

are not considered in the candidate set.

Given Theorem 1, the function FindFPCandidates (Lines 20–

27) in Algorithm 1 calculates the initial false positive can-

didate set. It initializes an empty set cand , reverses every
link in L from (l .src → l .dst ) to (l .dst → l .src ), and stores

this new set in L. Note that every non-tree link in L is an

upstream link that cannot carry traffic of T. FindFPCandi-
dates then iterates over all routers in R (Line 23), and for
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every router u, it adds to cand the non-tree links that are

adjacent to u and do not belong to L or L.
Controlling Inputs for BaseEncoder. The second impor-

tant aspect in the RLE algorithm is controlling the input

parameters to the BaseEncoder to successively reduce the

state across theK encoding rounds, without complicating the

packet processing algorithm at core routers. As illustrated

in ??, every round k of the algorithm produces a label Hk
and an intermediate state set Sk . Each round expects two

inputs: (1) links to be encoded Sk−1 (solid lines), and (2) false

positive candidates Sk−2 that may collide with Sk−1 in Hk
(dotted lines). These inputs are the resulting states from pre-

vious rounds, and they are subsets of the tree links L and the
false positive candidates. By including Hk in the final label,

the algorithm removes the false positive candidates in Sk−2
that are not stored in Sk . That is, in each round k , the algo-
rithm decides that some links from that round false positive

candidates Sk−2 are not needed in the final state SK . This is
because filters in Helix do not produce false negatives, and

Hk does not include them. As a result, the algorithm removes

these links from the resulting state of this round, and only

keeps the links Sk that may be needed in the final state.

Formally, to remove tree and non-tree links from the final

state, we extend the definitions of the links to be encoded and

the false positive candidates as follows. We denote the tree

linksL by S0, and the initial false positive candidate set by S−1.
For round k , the links to be encoded are the resulting state

from the previous round Sk−1. The false positive candidates
are the encoded links of the previous round Sk−2. We define

the outputs of round k as:

Hk = Encode link IDs in Sk−1 using EB , and (1)

Sk = Calculate state using CB ,Hk , and Sk−2 (2)

Generally, RLE uses K labels to remove links belonging to

S−1, S0, . . . , SK−2 from SK . For example, when K = 1, RLE

removes links from the initial candidate set S−1 (i.e., the

BaseEncoder). When K = 5, RLE uses five labels to remove

links belonging to S−1, S0, S1, S2, S3 from the final state S5.
Finally, given the structure of RLE in ??, the resulting

state in each round contains either tree or non-tree links

(but not a mixture of them). To elaborate, in the first round,

RLE encodes tree links intoH1. It takes S−1 as candidates and
produces S1 as state. Note that S1 is a subset of S−1, hence, the
resulting state S1 contains non-tree links only. Similarly, in

the second round, RLE encodes S1 intoH2 and uses S0 as false
positive candidates. Thus, the state S2 contains tree links that
is a subset of S0, and collides with S1 in H2. Formally, the

following theorem states this property.

Theorem 2. In the Recursive Label Encoder (RLE) algorithm,
if round k is even, the links encoded in the output state Sk are

tree links. Otherwise, these links do not belong to the multicast
tree.

Proof. The details of the proof are given in the Appendix.

The idea is to derive a relationship across resulting states,

and prove the theorem by induction. □

Time and Space Complexities. It is straightforward to

show that the time complexity of the RLE algorithm isO (NI+
KM ) and its space complexity isO (NI +M ), where N is the

number of routers, M is the number of links, I is the maxi-

mum number of interfaces per router, and K is number of

filtering rounds. The number of routers, interfaces and links

in ISP networks are usually in the orders of tens to hundreds.

And from our experiments (§5), K in the range of 4 to 7 re-

sults in good performance for most practical multicast trees

and network sizes. Recall that the RLE algorithm runs in the

control plane and invoked only at the creation of a multi-

cast tree and whenever it changes. Thus, the proposed label

creation algorithm can easily be deployed in real scenarios.

3.3 Processing Labeled Packets
The ingress and egress routers of every multicast session

perform simple operations on packets. The ingress router

attaches the label H received from the controller to every

packet in the multicast session. Egress routers detach labels

from packets before forwarding them towards end-users. In

this section, we focus on the packet processing algorithm

needed by core routers to forward packets of multicast trees.

This algorithm needs to achieve two goals. First, it has

to forward packets on and only links belonging to the tree

(i.e., correctness). It does so by exploiting the structure of

RLE and the absence of false negatives to make its decisions.

Second, it should perform at line rates and consume small

amount of hardware resources. We design the algorithm to

achieve high performance per packet by executing its op-

erations across links and rounds at same time. In addition,

we design the algorithm to use simple instructions, e.g., bit-

wise operations, that do not require large hardware resources.

Moreover, the algorithm only maintains small data structures

(i.e., bit-vectors) to keep intermediate computation results

per packet.

Upon receiving a packet at a core router, the algorithm

reads both the session ID and the attached label H . The al-

gorithm does not share information across different packets.

That is, the algorithm checks the label and the state (if any)

maintained by the router to decide which of the router’s links

belong to the multicast tree. The pseudo code of the proposed

packet processing algorithm is shown in Algorithm 2. To

efficiently utilize the available hardware resources and ac-

celerate processing, the algorithm makes decisions about all

links at same time. Specifically, for each link l , the algorithm
checks all the K components H1, . . . ,HK of the label H as
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follows. The algorithm searches for the first label component

Hk that does not contain the input link ID, l .id (Line 3). If

the algorithm finds such label and k is even, the algorithm

duplicates the packet on the link l . This decision is driven

by the design of RLE. Since filters in Helix do not produce

false negatives, the algorithm decides (without error) that

the input link does not belong to this label component. More-

over, given the structure of RLE, the candidates of the round

Sk−2 contain the link l .id , because Hk is the first label that

does not contain l .id . The algorithm decides whether these

candidates are tree or non-tree links based on the value of

k . If k is even, k − 2 is even as well. Hence, the links in Sk−2
are tree links (Theorem 2). If k is odd, these candidates are

non-tree links. Checking whether k is even in Line 4 can

be done by testing the first bit of k , which can be easily

implemented in hardware. Notice that routers can use the

results of Theorem 2 without storing the actual resulting

states S1, . . . , SK−1.
When l .id exists in all label components, the algorithm

needs to check the maintained state State . This is because
filters in Helix may result in false positives. Recall that this

maintained state is a subset of SK that is calculated by RLE.

The algorithm uses the results of Theorem 2 in this case as

well. If K is even, the router knows that the links in State are
tree links. Thus, the algorithm duplicates the packet if l .id
exists in State[ID] (Line 6). On the other hand, if K is odd,

the algorithm realizes that the maintained state contains non-

tree links. In this case, the algorithm duplicates the packet

only if l .id does not exist in State[ID].
The following theorem proves the correctness of Algo-

rithm 2.

Theorem 3. The packet processing algorithm, Algorithm 2,
duplicates packets on and only on links that belong to the
multicast tree.

Proof. We present the proof in the Appendix. The idea of

the proof is to utilize some properties of the used filters and

the structure of RLE. For example, a resulting state at any

round contains either tree or non-tree links. We enumerate

all cases in which a link belongs to the label, and derive the

required conditions to duplicate a packet on a given link. □

Implementation Notes.We perform two further optimiza-

tions to execute our algorithm at line rate. First, we do not

make routers execute the membership checking function

CB . Instead, each router stores K bit strings for every link

attached to it. These bit strings are calculated by the con-

troller once. We use Bloom filter in our experiments, but

other filters can be used as well. Second, we check the K
label components at same time by unfolding the logic inside

the loop in Lines 2–4. For a representative platform with

programmable processing pipeline such as FPGA, the loop

Algorithm 2 Process labeled packets at core router.

Input: l : link attached to the router

Input: H : Helix label

Input: State: a subset of SK stored at the router

Input: K : number of filtering rounds

Input: H = h1, . . . ,hK : set of K hash functions

Output: true if duplicating a pkt on link l , else false
// Runs for every link l attached to the core router

1: function ProcessLabeledPacket(l , H , State , K )
2: for (k = 1;k ≤ K ;k++) do
3: if (not CB (l .id,Hk ;hk )) then
4: return k % 2 == 0

// link l exists in H1,H2, . . . ,HK
// ID is the session ID included in the packet header

5: if (K is even) && (l .id ∈ State[ID]) then
6: return true
7: if (K is odd) && (l .id < State[ID]) then
8: return true
9: return false

can be unfolded across two clock cycles as follows. For each

link, the first clock cycle checks whether this link belongs

to all label components. For a given link, the second clock

cycle finds the first label component where that link does not

belong to. This fast implementation comes at a simple cost

of storing a small bit-vector when running our algorithm.

We discuss the details in §4.

4 EVALUATION IN A TESTBED
We present a proof-of-concept implementation of the packet

processing algorithm of Helix in a testbed. We realize that

core routers have many different hardware designs and soft-

ware stacks. The goal of this section is to show that our pro-

posed ideas can be implemented in a representative platform

(NetFPGA). For instance, the line cards of Huawei NetEngine

NE5000E core router are implemented using FPGA [30]. Al-

though the implementation of Helix in other platforms will

be different, the conceptual ideas are the same.

We use this testbed to show that Helix can sustain line-

rate performance with minimal overhead on the hardware

resources, and to demonstrate the correctness of Helix.

4.1 Testbed Setup and Algorithm
Implementation

Hardware. We implemented a router with a programmable

processing pipeline using NetFPGA SUME [32]. The router

has four 10GbE ports and it is clocked at 156.25 MHz. The

testbed also has a 40-core server with an Intel X520-DA2

2x10GbE NIC, which is used to generate and consume traffic

7
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Figure 4: Setup of our testbed.

at high rate. The router and the server are connected with

two SFP+ fiber optic cables. As shown in Figure 4, our im-

plementation represents a core router in an ISP topology.

Since the router has four ports, we use one port to transmit

packets from the traffic generator to the router. Another port

receives packets at the traffic generator after being processed

by the router. The remaining two ports are traffic sinks.

Implementation. Our implementation is based on the ref-
erence_switch_lite project for NetFPGAs [21], which we

synthesize using the Xilinx Vivado design suite. This router

contains threemainmodules: input_arbiter, output_port_-
lookup and output_queues. The input_arbiter dispatches
one packet at a time from the input queues to the output_-
port_lookup. The output_port_lookup decides the ports
to duplicate packets on by creating a bitmap of the destina-

tion ports. The output_queues module forwards the packet

based on the bitmap. Our implementation modifies the out-
put_port_lookup module to calculate the bitmap based on

the packet processing algorithm as follows. It contains a

memory block to store the state. If the controller instructs

the router to maintain state for a specific multicast session,

our implementation maps the session ID to an I -bit vector,
where I is the number of links attached to the router. For ev-

ery session maintained in memory, if a link i ∈ {0, . . . , I − 1}
is to be stored in this router, the corresponding bit at index

i is set to 1. For every port, the router knows the mapping

between this port and link ID. In addition, the router storesK
bit strings each of size B bits for every port. These bit strings

are the hashed link IDs created by the controller. We use

Bloom filter and Murmurhash3 as the hashing function.

When our implementation receives a labeled packet, it

parses the K label components by reading the first K ×B bits

that follow the Ethernet header. Once the label components

are parsed, our implementation runs in three clock cycles

(19.2ns) to determine the output ports. In the first clock cycle,

the module checks in parallel for each link whether it be-

longs to every label componentHk . Checking whether a link

belongs to a label component Hk in Bloom filter is a bitwise-

AND operation between the kth hashed link ID and Hk . This

nf1 nf2 nf3

Expected 38 7 10

Helix 38 7 10

LIPSIN [17] 38 10 37

Table 1: Validation of forwarding decisions made by
our packet processing algorithm.

operation is done in one clock cycle. Then, the algorithm

stores these results in an (I × K )-bit vector. For every link,

the second clock cycle uses the resulting bit vector to detect

the index k of the first label where this link does not exist.

If one link ID exists in all label components, the algorithm

requests a memory read using the session ID. The third clock

cycle specifies the final output ports based on the value of

k (even/odd) and the state maintained at the router for this

session (if any).

Traffic Generation and ISP Topology. The 40-core server
is used to generate traffic using MoonGen [10], which allows

creating new network protocols such as Helix using Lua

language. Since layer-3 protocols are the payload of Helix,

we do not generate any layer-3 specific headers. MoonGen

can measure the throughput of the received traffic at the

server as well. The arrows in Figure 4 show the direction of

the traffic. We transmit traffic of sessions on one port of the

NIC, and receive it through the router on the other port.

We consider a real ISP network topology with 125 routers,

chosen from the Internet Topology Zoo [26]. We make our

router act as one of these routers. Using this topology, we

randomly generate 40 multicast sessions. Every session has

a multicast tree covering various routers in the topology. For

each session, we use RLE to encode the tree into a label. We

set K to 4 rounds and B to 32 bits in our algorithm.

4.2 Results
Correctness of Forwarding Decisions. We first validate

the forwarding decisions made by the proposed packet pro-

cessing algorithm. We wrote a Python script that uses the

NetFPGA testing APIs. This script transmits one packet on

interface nf0 for each of the 40 multicast sessions. It com-

pares the observed forwarding decision of the algorithm

against the expected behavior knowing the multicast tree

of each session. Our results confirmed that all packets were

forwarded as expected, with no false positives (i.e., no packet

was forwarded to any link that does not belong to the corre-

sponding multicast session) and no false negatives (i.e., all

links that belong to a multicast session received the packet

of that session).
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Figure 5: Performance of Helix using the testbed.

We summarize the packet counts on the different inter-

faces of the router in Table 1. For comparison, we also imple-

mented the closest label-based multicast forwarding system

in the literature, called LIPSIN [17] which is briefly described

in Section 2. The first row in the table shows the expected

number of packets on each interface for the 40 sessions pass-

ing through the NetFPGA router, which exactly matches the

number resulted by running our algorithm (second row). The

third row (obtained by running LIPSIN) indicates that LIPSIN

results in many false positives. For example, interface nf3
received 37 packets instead of the expected 10 packets.

Resource Usage and Scalability.Wemeasure the resource

usage of the packet processing algorithm, in terms of the

number of used look-up tables (LUTs) and registers in the

NetFPGA. These numbers are generated by the Xilinx Vivado

tool after synthesizing and implementing the project. We

vary the number of filtering rounds K from 1 to 6 and plot

the numbers of LUTs and registers used by our algorithm

in Figure 5a. The figure shows that our algorithm utilizes

a tiny amount of the available hardware resources. For ex-

ample, when K is 6, our algorithm requires 559 LUTs and

1,420 registers, which represent only 0.13% and 0.16% of the

available LUTs and registers, respectively. Moreover, increas-

ing K from 1 to 6 requires only additional 46 LUTs and 42

registers. Thus, our packet processing algorithm scales well

as the number of rounds increases.

Next, we analyze the performance of our algorithm as we

increase the number of ports from 4 to 1,024. We increase the

number of ports by controlling a parameter in our Verilog

implementation. Since our router has only four ports, we

map each of the additional ports to a physical port in a round-

robin fashion. We set the number of filtering rounds K to

6. The results of this experiment are shown in Figure 5b,

which shows that Helix scales as we increase the number of

ports. For example, for a large router with 1,024 ports, our

algorithm uses only 3.4% and 0.87% of the available LUTs

and registers, respectively.

Throughput Measurement.We show that our packet pro-

cessing algorithm can easily handle packets at line rate. In

this experiment, we use MoonGen to generate labeled pack-

ets of multicast traffic at 10 Gbps. We transmit these packets

from the traffic-generating server to the router on interface

nf0 for 60 sec. We use MoonGen to count the number of

packets per second received at each of the other interfaces

of the router. We vary the packet size from 64 to 1,024 bytes.

We run the experiment five times for every packet size and

compute the average across them. In Figure 5c, we compare

the average number of input packets per second to the router

(received on interface nf0) against the average number of

packets per second observed on one of the output interfaces

(interface nf1); the results for other interfaces are the same.

The figure shows that the numbers of transmitted and re-

ceived packets per second are the same (i.e., no packet losses).

We plot the achieved throughput in the same figure. The fig-

ure shows that our algorithm can sustain the required 10

Gbps throughput for all packet sizes.

5 EVALUATION USING SIMULATION
In this section, we compare Helix against the closest ap-

proaches in the literature in large-scale simulations. And we

analyze the effect of varying various Helix parameters.

5.1 Setup
We implemented a Python-based simulator that acts as a

what-if scenario analysis tool. The simulator allows us to

evaluate the performance of different multicast forwarding

systems in large setups in terms of label size, topology size,

receiver density and number of sessions. The core component

of the simulator implements the Helix controller. It receives

an event such as a router joining/leaving a session, updates

the corresponding multicast tree, and then generates labels

and states based on the used algorithm.

Performance Metrics and Control Parameters.We con-

sider two main performance metrics:
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Figure 6: The effect of label size on the session state for Helix and LIPSIN.

(1) Session state: number of routers that need to maintain

state for a session.

(2) Number of messages per tree update: number of mes-

sages sent to routers by the controller when amulticast

tree is updated to modify the state at these routers.

We report the 95-percentile of these metrics, because it re-

flects the performance over extended number of sessions or

period of time. We repeat every experiment five times and

report the average of the 95-percentile of every metric across

these repetitions.

The main parameters we control in the experiments are:

(1) Label size: We vary the label size from 48 to 128 bytes.

(2) Receiver density: It is defined as the number of routers

that join a session divided by the total number of

routers. We vary the maximum receiver density from

10% to 40%.

(3) Topology size: We use 14 real ISP topologies from the

Internet Topology Zoo datasets [26]. They represent a

wide range of ISPs, where the number of core routers

ranges from 36 to 197, and the number of links ranges

from 152 to 486.

SystemsComparedAgainst.We compare Helix versus the

closest label-based multicast forwarding system, which is

LIPSIN [17]. LIPSIN encodes the tree link IDs of a session us-

ing one filter. For every link, the LIPSIN controller maintains

D link ID tables with different hash values. LIPSIN creates

the final label by selecting the table that results in the mini-

mum false positive rate. Every router maintains D tables for

every link attached to it. Since LIPSIN may result in false

positives, each router maintains state about incoming links

and the label that may result in loops for every session pass-

ing through this router. To ensure fairness, we use the same

parameters proposed by LIPSIN: we set D to 8 tables and

use five hash functions per link. For both Helix and LIPSIN,

we use Bloom filters and Murmurhash3 hashing functions.

When Helix uses K filtering rounds and B bits per round,

LIPSIN encodes the links in a label of size K × B bits. Thus,

both systems use the same label size.

In addition, we implemented a rule-based multicast for-

warding system using OpenFlow [18], because rule-based is

a general packet processing model that is supported in many

networks. The rule-based system installs match-action rules

in routers to implement the multicast trees.

Session Dynamics. For every topology, we simulate 2,000

dynamic multicast sessions for 12 hours, where receivers

join and leave sessions over time. The sources of multicast

sessions are uniformly distributed among the routers. For

each session, the maximum receiver density is randomly

chosen to be either 10%, 20%, 30% or 40% of routers in that

topology. The session bandwidth is randomly assigned to

one of {0.5, 1, 2, 5, 10} Mbps values.

We simulate multicast session dynamics such as router

joining/leaving as follows. For every router, we generate

events following a Poisson distribution with an average rate

of λ events per minute, where λ is computed by dividing

the number of sessions by the number of routers. For every

event at a router, we randomly pick a multicast session, and

the router randomly joins or leaves the multicast session

with probabilities 0.6 and 0.4, respectively. Since Helix does
not dictate how multicast trees are computed, we use an

algorithm similar to [15] to calculate multicast trees based

on link utilization.

Due to space limitation, we only present a representative

sample of our results.

5.2 Comparison against LIPSIN
Label Size. We first analyze the impact of varying the label

size on the session state and number of messages per tree

update. As illustrated in Figure 6 for three representative

topologies, our results show that Helix requires maintaining

state at fewer routers compared to LIPSIN, and it eliminates

the state completely in many cases There are two points

to be observed from the figure. First, Helix achieves better
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Figure 7: Impact of receiver density on the session state for Helix and LIPSIN. The label size is 64 bytes.

performance using the same label size. For example, when

the label size is 48 bytes, 95% of the sessions in LIPSIN need

to store state at 18, 32, and 48 routers for the three topologies,

respectively. Whereas for the same label size, Helix requires

state at 1, 5, and 19 routers for the three topologies, respec-

tively. That is, Helix achieves at least 2.5X and up to 18X

reduction in the state compared to LIPSIN. Second, Helix

eliminates the need to maintain state with much smaller

label sizes compared to LIPSIN. For example, when the topol-

ogy size is 158 routers and the label size is 64 bytes, Helix

does not require any router to store state. LIPSIN, on the

other hand, maintains state at 17 routers for the same case. A

side benefit of reducing the number of routers maintaining

state is reducing the number of messages per tree update

sent from the controller (figures are omitted). For example,

for topology of size 158 routers and label size of 64 bytes,

LIPSIN sends 19 messages to update each session, whereas

Helix sends only 1 message. Reducing number of messages

improves network agility in case of routers joining/leaving

sessions and network failures.

Receiver Density.We next study the the impact of the re-

ceiver density on the session state and the number of mes-

sages per tree update when the label size is 64 bytes. Fig-

ures 7a–7c show that the session state of LIPSIN increases

linearly as the receiver density increases. On the other hand,

the session state in Helix increases at slow rate with increas-

ing the receiver density. For the topology of 125 routers, for

example, Helix does not result in state at any router. LIPSIN,

however, requires maintaining state even when the receiver

density is 10%. For the topology of 158 routers, Helix does

not maintain state at any router for receiver density up to

22%. For the largest topology, Helix reduces the session state

by up to 15X compared to LIPSIN. As a result of reducing

the session state, Helix reduces the number of message per

tree update by up to 19X, 20X and 16X for the three sample

topologies, respectively (figures are not shown).

False Positives and Loops. We analyze the false positive

overheads of LIPSIN. We calculate this overhead by dividing

the number of sessions that are falsely passing through a link

by the exact number of sessions that should pass through the

same link. Our results show that LIPSIN imposes large over-

heads due to false positives. For example, when the topology

size is 158 routers and label size is 64 bytes, LIPSIN results

in a false positive rate of 37%. For the same topology, LIPSIN

needs to increase the label size to 128 bytes to eliminate this

overhead. These false positives not only impose redundant

traffic, but they also can introduce forwarding loops. For the

same topology and label size, if LIPSIN routers do not store

state as well as additional per-packet information to detect

loops, our simulation shows that there would be 250 sessions

with loops (i.e., 12% of sessions).

Helix does not incur these overheads because it eliminates

false positives.

5.3 Comparison against OpenFlow
We compareHelix versus a rule-based approach implemented

using OpenFlow. Since OpenFlow does not use labels, we

only analyze the impact of receiver density on the perfor-

mance. We use three label sizes for Helix: 64, 80 and 96 bytes.

Figure 8a depicts the session state for one sample topol-

ogy of 158 routers. The figure shows that Helix outperforms

OpenFlow for all receiver densities. For example, when the

receiver density is 38%, the 64-byte label results in storing

state at up to 2 routers (1.3% of the routers) for 95% of the ses-

sions. Using 80- and 96-byte labels do not result in any state

for any receiver density. For the same topology, OpenFlow

requires installing match-action rules at up to 120 routers

when the receiver density is 38%.

Increasing the session state at OpenFlow routers not only

consumes their limited memory resources, but also increases

the communication overhead when updating this state (i.e.,

when a session is updated). Figure 8b depicts the number of

messages per tree update for Helix and OpenFlow systems
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Figure 9: Impact of filter size B on the
session state for multiple values of K .

for the sample topology. The figure shows that OpenFlow

requires sending 36 messages to update state when the re-

ceiver density is 10%. For the same receiver density, Helix

sends only one message to update the label at the ingress

router. When the receiver density is 38%, the number of mes-

sages per tree update of Helix is only 3 when the label size

is 64 bytes. OpenFlow, on the other hand, requires sending

22 messages to update state at corresponding routers.

5.4 Analysis of Helix Parameters
Choosing working ranges for Helix parameters is important

in order to achieve the expected performance gains.We study

the impact of choosing B and K on the session state for six

topologies of different sizes. In Figure 9, we show the session

state for one of the topologies (158 routers) for six values of

K while increasing B from 2 to 16 bytes. Other figures are

similar and omitted due to space limitations. We can draw

three conclusions from the results.

First, choosing a proper value for B is more important than

increasingK . For example, in Figure 9, increasingK to 8when

B is small (i.e., 2–4 bytes) does not reduce the session state.

This is because small filters cannot encode tree and non-tree

links without resulting in many false positives. Second, once

B is properly chosen, increasingK systematically reduces the

session state. In the same figure, when B is 8 bytes, increasing

K from 3 to 6 reduces the session state from 40 to 12. Setting

K to 8 eliminates the session state.

Finally, choosing good ranges for B and K depends on the

topology size. For small topologies (35–75 routers), B can be

set to 4–6 bytes, andK to 4–6 rounds. For medium topologies

(75–150 routers), B can be set to 8–12 bytes, and K to 5–7

rounds. For large topologies (150+ routers), we can set B
to 12–16 bytes, and K to 5–7 rounds. For a given label size,

choosing B within these ranges results in better performance

than smaller values with large K . For example, in the 158-

router topology, setting B to 6 bytes and K to 8 results in

maintaining state at 38 routers per session. However, setting

B to 12 bytes and K to 4 reduces the session state to 4.

6 CONCLUSIONS
Recent large-scale live broadcast applications have intro-

duced a renewed interest in designing efficient multicast

services. Current multicast systems cannot implement gen-

eral multicast trees, do not scale in terms of state maintained

at routers, or may introduce loops and redundant traffic.

We designed, implemented, and evaluated a new multicast

forwarding system, called Helix, which is general (can be

used with any topology), scalable (minimizes the size and

update frequency of the state maintained at routers), and

efficient (does not introduce loops or forward packets on

links not belonging to the multicast tree). Helix has con-

trol plane and data plane components. In the control plane,

Helix uses a Recursive Label Encoder (RLE) algorithm to

encode multicast trees into labels. RLE uses probabilistic set

membership data structures to encode tree links as labels.

While these probabilistic data structures reduce the label

size, they introduce false positives. To address this problem,

RLE calculates a set of links that are false positives, and

sends them to the routers that handle these links as a state.

RLE minimizes this state by recursively encoding both tree

and non-tree links across multiple rounds. This allows RLE

to encode more information in the label. In the data plane,

core routers execute a simple processing algorithm on each

packet, which utilizes the information embedded in the la-

bels by RLE. We analytically proved the correctness of Helix.

In addition, we demonstrated the practicality of Helix by

implementing it in a testbed and showing that it can provide

line-rate throughput and it consumes a small fraction of the

hardware resources. We have also compared Helix against

the closest multicast forwarding systems in the literature

using large-scale simulations with real ISP topologies. Our

simulation results showed that Helix can achieve significant

12



Efficient Multicast Forwarding Conf’2020, 2020,

performance gains over the other systems. For example, He-

lix reduces the state per session by up to 18X compared to

the closest label-based multicast forwarding system. In addi-

tion, Helix eliminates the required state for many sessions

using smaller labels across different topologies. Furthermore,

compared to OpenFlow, Helix decreases the required state

per session by up to 112X.
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A PROOFS
A.1 Theorem 1: Completeness and

minimality of calculated candidates
Theorem 1. The initial false positive candidate set is com-

plete and minimal if it is composed of every link l = (u → v ) <
L provided that u ∈ R and (v → u) < L, where R and L are
the sets of nodes and links of the multicast tree T, respectively.

Proof. Recall that the initial set of false positive candi-

dates is the set used in the first round of encoding. We find

this set by enumerating all possible combinations of every

link (u → v ) in the network. Then, we derive the sufficient

conditions for a link to be a false positive candidate. To

achieve this, we check for each link (u → v ) whether u and
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# u v Condition Decision Example

1 < R < R None Not included

2 < R ∈ R None Not included

3 ∈ R < R None Included

4 ∈ R ∈ R (u → v ) < L Included

5 ∈ R ∈ R (v → u) ∈ L Not Included

Table 2: Possible combinations of every link (u → v )
based on its source u and destination v routers. The
table shows the conditions to include links in the
initial false positive candidate set. The examples are
from Figure 11.

v belong to the tree nodes R. Table 2 lists these combinations

with examples from Figure 11.

Note that the outgoing links attached to a router u that

does not belong to R cannot be false positives (rows 1 and 2

in Table 2). This is because a packet can only reach a router

u < R from a router p ∈ R by passing through a false positive

link lf p attached to p. In this case, p should have already

stored that the link lf p is a false positive, and it would not

forward packets on this link. Hence, a link (u → v ) where
v ∈ neighbors(u) cannot be a false positive, and consequently
is not a candidate.

Only links connected to a core router in R may be a can-

didate (rows 3, 4, and 5) as explained below:

(1) u ∈ R and v < R (row 3): When a packet reaches a

routeru, this router does not know if (u → v ) is a non-
tree link. This is because this link may collide with

the tree links in the first round of encoding. Thus, the

BaseEncoder needs to check whether this link collides

with the tree links in H1. Thus, (u → v ) is a candidate.
(2) Both u and v belong to R. There are two possibilities

of links connecting these two routers:

(a) (u → v ) < L (row 4). This link can result in forward-

ing loops because it can be a false positive. Hence it

is a candidate, or

(b) (v → u) ∈ L (row 5). Upon receiving packets at

router u from v (i.e., through (v → u)), router u
should not forward them back on the upstream link.

Hence, (u → v ) cannot be a candidate.

In Table 2, links that satisfy the conditions in rows 3–5 are

complete because there is no other link combination not

mentioned in the table. They are minimal because if we

exclude any link from rows 3–5, this will result in incomplete

set. □

A.2 Theorem 2: Classifying state sets to
tree or non-tree links

Theorem 2. In the Recursive Label Encoder (RLE) algorithm,
if round k is even, the links encoded in the output state Sk are
tree links. Otherwise, these links do not belong to the multicast
tree.

Proof. We first state two properties about any three con-

secutive sets. Given Sk−2, Sk−1, and Sk , the following two

properties hold:

Sk ⊆ Sk−2, and (3)

Sk ∩ Sk−1 = ϕ . (4)

This means that, for round k , the state Sk is a subset of the

round candidates Sk−2. In addition, the intersection of Sk
and the round encoded links Sk−1 is an empty set. The first

property holds because, in RLE, the false positive candidate

set of a round k is the set Sk−2. RLE keeps some links from

Sk−2 and removes others. Then it produces Sk as a resulting

state. The second property holds because Sk−1 is the input
links to be encoded for round k , and Sk is the resulting state

from the round candidates. In the first round of RLE, links to

be encoded and candidates are non-overlapping sets because

they are subsets of L and the initial false positive candidate

set, respectively. Since RLE controls the inputs to BaseEn-

coder by swapping links and candidates, these two sets do

not intersect.

We next define Sk in terms of the previous states using

this recurrence:

Base case:

k = 0, S0 = L are tree links, and

k = 1, S1 are non-tree links.

For k ≥ 2:

∀l ∈ Sk , l ∈ Sk−2 and l < Sk−1.

For the base case, links in S0 are tree links by definition. The

calculated state S1 are the non-tree links that collide with
S0 in H1. The recurrence case (i.e., k ≥ 2) holds because any

link in Sk belongs to the set Sk−2 (Eq. 3), and does not belong
to the input set Sk−1 (Eq. 4).

By substituting a given k in this recurrence, we can always

check if the set Sk is a subset of the tree links S0 or the

non-tree links S1. That is, if k is even, l ∈ Sk ⊆ · · · ⊆ S0.
Otherwise, l ∈ Sk ⊆ · · · ⊆ S1. In addition, a state Sk cannot

include tree and non-tree links because of Eq. 4. □

A.3 Theorem 3: Correctness of the packet
processing algorithm

Theorem 3. The packet processing algorithm, Algorithm 2,
duplicates packets on and only on links that belong to the
multicast tree.
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Proof. The idea of the proof is to use the maintained

state and exploit the properties of the RLE and used filters to

determine if a link belongs to the multicast tree. To achieve

this, we list all cases where a link belongs (or does not belong)

to label components.

Given label components, there are three possibilities for a

link l attached to a router:

(1) this link does not belong to at least one label compo-

nent Hk but belongs to previous ones H1, . . . ,Hk−1,

(2) it does not belong to any label component, or

(3) it belongs to all label components H1, . . . ,HK .

In the first case, our proof relies on two properties. First,

the candidates of round k in RLE is Sk−2 as stated in Eq. 2.

Second, filters in Helix do not produce false negatives. Let

Hk be the first label where l does not belong to. The router
knows that link l : (1) does not belong to the links in Sk−1∪Sk
(i.e., links that exist in Hk ), and (2) belongs to the candidates

Sk−2. Otherwise,Hk would not be the first label where l does
not belong to. This is because RLE removes links from the

candidates only if they do not collide in Hk with the links to

be encoded. If k is even, the router knows that the candidate

set Sk−2 of this round is a subset of the tree links (Theorem 2).

This means that l .id ∈ Sk−2 ⊆ · · · ⊆ S0. Thus, the packet is
duplicated on l . If k is odd, the opposite result holds, where

l .id ∈ Sk−2 and Sk−2 ⊆ · · · ⊆ S1. Thus, the packet is not

duplicated.

In the second case, if a link does not belong to any label

component, this link does not belong to the first label as well.

Thus, it is easy to see that this case is a special instance of the

first case when k = 1. Thus, the link belongs to S−1 which
are non-tree links.

The third case is when l belongs to all labels H1, . . . ,HK .

This means that RLE could not remove this link from all

previous states S1, . . . , SK−1. And since the filters may result

in false positives, it is not conclusive whether l belongs to
the tree links. Thus, we need to look at the content of the

maintained state SK . In this case, we derive the conditions

of duplicating packets by using the results of Theorem 2 to

decide whether SK contains tree or non-tree links as follows:

(1) K is odd. The stored state SK is a set of non-tree links

(Theorem 2). If l .id < SK , it means that l .id does not

belong to the non-tree links, the packet is duplicated

on l . Otherwise, the packet is not duplicated.
(2) K is even. The stored state SK is a set of tree links. If

l .id ∈ SK , then l .id ∈ L and the router duplicates a

packet on l . Otherwise, l is a non-tree link, and the

packet is not duplicated on it.

□

Figure 10: The topology andmulticast tree used in the
example.

(a) The first round of encoding using BaseEncoder.

(b) Resulting labels and states of running RLE with K = 5.

Figure 11: Illustrative example of the RLE algorithm.

B ILLUSTRATIVE EXAMPLE
We present a simple example in Figure 11 to illustrate the

various components of Helix. This example uses the topology

and multicast tree in Figure 2 (repeated in Figure 10 for

quick reference). Figure 11a shows a multicast tree that spans

the routers numbered 1 to 10. Routers labeled a,b, c do not
belong to the tree. The figure illustrates the first round of

encoding based on the tree links and the initial false positive

candidate set. Figure 11b shows the labels and states after

applying RLE on the same tree when K is 5. For simplicity,

we show the content of a label Hi as the union of two sets:

links encoded in that round Si−1, and false positive links Si
that collide with these encoded links.
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In the first round, RLE encodes the tree links S0 into H1,

and produces state S1. Note that H1 encodes all links in S0
and the links from S−1 that collide with S0 in H1. Thus, S1 is
the state of the first round. The second round takes S1 as the
links to be encoded, and S0 as the false positive candidates.
This round produces label H2 that includes S1 and S2. Note
that in this round, the tree links (1→ 2) and (1→ 3) (among

other tree links) do not collide with any link in S1. Hence,
RLE decides that these links are not needed in S2, becauseH2

does not include them. The final round takes S4 as links to be
encoded, and S3 as false positive candidates. Both non-tree

links (7→ c ) and (5→ 6) do not collide with any link in H5,

and thus they are removed from S5.
Notice that the resulting states at even rounds S2 and S4

are tree links, and the resulting states at odd rounds S1, S3
and S5 are non-tree links.

Finally, we illustrate the decisions made by the packet

processing algorithm. First, we show the decisions for some

non-tree links. For the link (7 → 8), the algorithm finds

that it exists in both H1 and H2, but it does not belong to H3

(Figure 11b). Thus, the algorithm does not duplicate packets

on this link. For the link (1 → a), it exists in all labels. In

this case, K is odd and the link exists in S5. As a result, the
algorithm does not duplicate the packet on this link. Second,

we describe the decisions for some tree links. For the link

(1 → 2), the algorithm finds that it exists in H1 but not in

H2. Thus, the algorithm duplicates packets on this link. In

the case of link (3→ 6), the algorithm finds that it exists in

all labels. Since K is odd and the link does not exist in S5, the
algorithm duplicates packets on this link.
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